
COS435 / ECE433: Introduction to RL Due: May 7, 2024

Learning a Squash RL Agent: Yasse-RL Halaby

Authors. Arin Mukherjee (arinm@princeton.edu), Saumya Malik
(saumyam@princeton.edu)

1 Introduction and Motivation

Figure 1: Dick Fosbury (top-left), Steph
Curry (top-right), Roger Federer (bottom-
left), Nick Foles (bottom-right)

The way sports are played is continuously evolv-
ing. Sometimes, new surprisingly effective
strategies emerge and revolutionize the sport.
In the NBA, teams averaged just a few 3-point
attempts per game until the 1990s. The shot
was seen as a last resort rather than an inte-
gral part of offensive strategy. However, over
the next couple decades, its value as a high-
reward option and a way to stretch the oppos-
ing team’s defense began to be recognized and
thus it gained popularity across the league. In
the sport of high jump, the bar was tradition-
ally cleared face-down. However, Dick Fosbury
introduced a technique at the 1968 Olympics
where he jumped over the bar back-first. This
strategy allowed for higher clearances and soon
became the standard technique in high jump.
Sometimes, athletes/teams discover unortho-
dox strategies that are used more sparingly
to stun opponents, such as Roger Federer’s
SABR technique in tennis and trick plays like
the Philly Special in American football.

Athletes are trained in line with contemporary strategic standards, leading to inherent bias
in the way they learn to play their sport. For this reason, the discovery of these hidden
strategies is gradual and infrequent. What if there was a way to learn a sport such that we
could learn these hidden optimal strategies without being influenced by current strategic
norms? This is the ultimate motivation for this project.

Figure 2: Diagram of squash court

Squash is a fast-paced racquet sport in which
two players take turns hitting a small rubber
ball against the front wall of a four-walled court.
The goal is to hit a shot such that the ball
bounces twice on the floor before your oppo-
nent is able to retrieve it. There is also a tin and
out line on the front wall limiting how low and
high you can hit the ball respectively. A typical
rally between two right-handed players in the
modern game will involve an exchange of deep
shots (shots whose first bounce is a long dis-
tance from the front wall) along the backhand
wall, with each player aiming to keep their shot
as close (’tight’) to the wall as possible. The idea
is that hitting tighter shots limits the range of
shots available to your opponent and also in-
creases the probability of your opponent hitting
a ‘loose’ shot. Upon receiving a loose shot, a

player will typically hit lower shots that bounce on the floor quite close to the front wall



Learning a Squash RL Agent: Yasse-RL Halaby

COS435 / ECE433: Introduction to RL

Due: May 7, 2024

(’going short’), thereby forcing the opponent to expend energy and put themselves in a
bad position. This strategy (1. hit straight and deep, 2. wait for the loose ball, 3. go short)
is taught universally to junior squash players around the world. Some basic principles
implicit in this strategy include hitting the ball away from your opponent and staying
in a central position on the court when it is your opponent’s turn to hit a shot. In this
project, we focus on setting up a reinforcement learning (RL) environment for squash and
training a computer agent to learn such basic principles, setting the stage for discovery of
more creative strategies in future work. We hope to train our own RL agent as capable as
Yasser El Halaby (’06), a four time intercollegiate individual champion and alumnus of the
Princeton Squash Team.

The state and action spaces in a full RL implementation are quite high-dimensional. A
state would encode the dynamics of the ball, the two players, and their racquets as well as
the players’ energy levels. An action would encode at least one of the player’s movements.
To physically simulate a player accurately in a virtual environment, we would need to
track each of their joints and limbs. Our reward structure would also be quite sparse. An
agent would receive positive/negative rewards for winning/losing a match, which is best
of 5 games, where each game is first to 11 points. We would need to consider rewards at
the level of matches to fully account for strategies such as giving up an earlier game to
save energy for a later, more crucial game. Obviously this full implementation is quite
intractable. For this reason, in addition to squash being a niche application of RL, this
problem has not been approached before to the best of our knowledge.

To make the squash problem approachable with the resources and time available for this
project, we simplify the MDP as much as possible and encode the relevant dynamics in
a custom OpenAI Gym environment [2]. The two RL algorithms we consider are PPO
(Proximal Policy Optimization) and DQN (Deep Q-Learning). The specifics of the custom
environment implementation and these algorithms are detailed in Section 3 - Methods.

2 Related Work

This project took inspiration from "Control Strategies for Physically Simulated Characters
Performing Two-player Competitive Sports" [3], where an RL-agent is trained to learn
boxing/fencing. In this work, the agent takes the form of a humanoid with many degrees
of freedom. The characters are actuated by joint torques, allowing for realistic motion
dynamics. The trained agents are ultimately able to perform responsive and natural-
looking behaviors in these two-player competitive settings. For the scope of this project,
these physically simulated characters are too complex, so we instead consider a much
simpler version of the squash problem.

Figure 3: Visualizations of Atari Pong
Gym Environment (left), simplest ver-
sion of custom squash Gym Environment
(right)

We map the 3D court onto a 2D Atari style
screen. As shown in Figure 3, our initial setup
is quite similar to that of Atari Pong, so we
apply many of the same strategies to change
our agent. Below we describe a method that
has seen RL agents perform well at Atari Pong,
detailed in Andrej Karpathy’s blog post Pong
from Pixels.

The agent is trained using a policy network that
takes raw pixels as inputs. This method stands
in contrast to defining the state as a vector that
directly encodes information on ball position,
ball velocity, both paddle positions, etc. This
raw pixel approach is advantageous for a num-
ber of reasons. Firstly, it allows our learning
algorithm to operate directly on the Gym envi-
ronment’s native representation. Additionally,
working with pixels leaves room for the policy
network to identify useful features that may not

2



Learning a Squash RL Agent: Yasse-RL Halaby

COS435 / ECE433: Introduction to RL

Due: May 7, 2024

have been considered in the manual feature engineering. This approach requires signifi-
cantly more computational power in comparison so it is possible that in the case of this
simple custom squash setting where we can easily manually encode the relevant features,
that the pixel approach will require longer training times. However, we stick with this
method as it will generalize better to more complex versions of the squash environment.

In the Atari Pong training, difference frames are fed to the policy network by subtracting
the current frame from the previous frame. This preprocessing step helps the policy
network focus on changes in the game state, thereby capturing a sense of ball velocity,
which is crucial for making decisions. The network outputs a probability of moving the
paddle UP or DOWN, and actions are sampled from this probability distribution. A policy
gradient algorithm is used to adjust the network weights based on the outcomes that result
from the sampled actions.

There are some key differences between the Atari Pong setup and our custom squash
environment which we highlight in Section 3. Yet the setups are similar enough to justify
using the approach detailed above.

In the end, we produced three novel custom environments for squash, including the first
environment (to our knowledge) that captures some 3D dynamics

3 Method

In this section, we describe the two-prongs of our approach: implementing a custom
squash environment, and applying RL methods (specifically, PPO and DQN) to train an
agent to “play squash" in our custom environment.

These two prongs of our approach are related and together formed an iterative development
approach in which we repeatedly did the following:

1. Constructed an environment

2. Trained an agent on the environment

3. Evaluated performance

4. Added complexity to environment dynamics

5. Repeat

In the subsections below, we provide an overview of the different versions of our Custom
Squash environment (increasing in complexity), along the way highlighting different varia-
tions that we considered for the reward function. We then discuss how we implemented
RL training. This iterative approach reflects a genuine substantial effort and the culmina-
tion of our many thoughtful re-considerations of our reward dynamics, how to capture
complexities of the game, and how to go about implementing training. Finally, we include
a short subsection at the end describing unsuccessful previous efforts, whose revisions
ultimately culminated in our final product.

3.1 Custom Environment

In this subsection, we discuss the construction of our custom environments, describing
how we formulate the squash problem as an MDP. We produced three novel custom
squash environments, each capturing more complexities of the game. Broadly, we made a
single player squash environment a multiplayer squash environment (with a hard-coded
opponent paddle), both with two-dimensional ball movement and one-dimensional paddle
movement as in Atari Pong, and we also made a multiplayer squash environment that
allows for two-dimensional paddle movement anywhere on the court to capture freedom
of movement in squash and allows for three-dimensional ball movement to more faithfully
capture the notion of a second bounce in squash. (Implementing this last version was
initially our stretch goal!) We now describe how we formulated each of these environments
as an MDP. For dynamic visual references of each of these environments, we refer the
reader to a folder of screen-recordings of our trained agents in each environment.

3

https://drive.google.com/drive/folders/1AAjzwHzfwl-s7-YXn-nNiv9pHfluyGqT


Learning a Squash RL Agent: Yasse-RL Halaby

COS435 / ECE433: Introduction to RL

Due: May 7, 2024

Figure 4: Version 1: Single Player Environment (Left); Version 2: Multi Player V1 Environ-
ment (Right)

3.1.1 Version 1: Single Player (2D ball movement, 1D Paddle Movement)

• High-Level Dynamics: There is a single paddle that is constrained to move along
the back wall of the court. The ball is restricted to moving in two dimensions
(within the plane of the game screen). Upon making contact with a wall or the
paddle, the ball is redirected according to the angle of incidence with the plane of
contact. Since the ball moves in 2D, we have no notion of height. In squash, a loss
is defined as not reaching the ball before it bounces twice. However, as we have
no concept of a bounce in this environment, we instead define a loss as the ball
making contact with the back wall (without being blocked by the paddle).

• State/Observation Space: Gray scale pixel array of size 320 × 210. Screen in black.
Ball in white. Paddle in white.

• Action Space: STAY, LEFT, RIGHT

• Rewards: -1 for the ball hitting the back wall, +0.5 for the paddle making contact
with the ball.

3.1.2 Version 2: Multi Player v1 (2D ball movement, 1D Paddle Movement)

• High-Level Dynamics: We now introduce a second (opponent) paddle along the
back wall. This paddle follows a fixed policy: Move the center of the paddle
towards the ball’s current position. Intuitively, this is a suboptimal policy. We
would want to move to a future position of the ball by predicting its trajectory as
opposed to always moving towards its current position. However, for the speed of
the ball that we specify, this policy is effectively unbeatable, so at best our agent
will match its performance. Training against a strong opponent is an intentional
choice as we do not want to reward our agent for useless actions that were taken
in a rollout in which the opponent was coincidentally too slow to reach the ball.
We also introduce the notion of turns. This is not required in Atari Pong as the
two paddles are on opposite sides of the screen. A loss is now defined as the ball
making contact with the back wall when it is our turn to hit.

• State/Observation Space: Gray scale pixel array of size 320 × 210. Screen in black.
Ball in white. Our paddle in white. Opponent’s paddle in gray (to allow the
policy net to distinguish between the two paddles). In Multi v1 Diff we feed the
difference between two such frames.

• Action Space: STAY, LEFT, RIGHT

4



Learning a Squash RL Agent: Yasse-RL Halaby

COS435 / ECE433: Introduction to RL

Due: May 7, 2024

Figure 5: Version 3: Multi Player V2 setup with regular court size. The left image shows a
ball close to the floor. The right image shows a ball at the peak of its bounce.

• Rewards: -1 for the ball hitting the back wall on our turn, +1 for the ball hitting
the back wall on the opponent’s turn, +0.5 for our paddle making contact with the
ball on our turn.

3.1.3 Version 3: Multi Player v2 (3D ball movement, 2D Paddle Movement)

• High-Level Dynamics: We now allow the paddles to move in two dimensions. We
redefine a loss as the ball bouncing twice. We track the height and z-velocity of
the ball and update it according to simple kinematics equations. We encode the
height of the ball into the pixel input to our policy net by having the size of the
ball on the screen be proportional to the height. A ball close to the ground will
be displayed as smaller, while a ball at the peak of its bounce will be displayed
as larger. Upon making contact with the paddle, the ball’s z-velocity is flipped.
Hence, a player is allowed to hit the ball into the floor before it makes contact with
the front wall (which is not allowed in squash) if the paddle makes contact with
the ball when it is on the rise. Again, the opponent’s paddle follows the fixed
policy of moving towards the ball, which is still effectively unbeatable. As this
environment is more complex than our previous versions, we tweak the court size
to increase the likelihood of the event that our agent stumbles into the ball.

• State/Observation Space: Gray scale pixel array of size 160 × 210 (smaller to make
it easier for the paddle to stumble across the ball in exploration now that the
paddle can move in two dimensions). Screen in black. Ball in white. Our paddle in
white. Opponent’s paddle in gray. In Multi v2 Diff we feed the difference between
two such frames.

• Action Space: STAY, UP, DOWN, LEFT, RIGHT, UP-LEFT, UP-RIGHT, DOWN-
RIGHT, DOWN-LEFT

• Rewards: -1 for the ball bouncing twice after hitting the front wall on our turn, +5

for the ball bouncing twice after hitting the front wall on the opponent’s turn, +2

for the paddle making contact with the ball on our turn. We define the reward
structure in this way to highly encourage the paddle towards behavior that results
in making contact with the ball.

3.2 Applying RL Methods

We applied two RL algorithms we learned in class, PPO and DQN, to each of our five
squash environments described above. Before discussing details of training, let us quickly
introduce these algorithms:

5



Learning a Squash RL Agent: Yasse-RL Halaby

COS435 / ECE433: Introduction to RL

Due: May 7, 2024

PPO, or Proximal Policy Optimization, is an advanced policy gradient method.
PPO has a clipped objective function that limits the amount a policy can change on an
update. This confers a great deal of stability and efficiency to PPO, among its primary
advantages. Given how popular PPO is as policy-gradient option for many applications in
Deep RL, we decided to apply it to our novel squash application.

DQN, or Deep Q-Learning, is an off-policy algorithm that leverages deep learn-
ing to train a neural network to serve as a function approximator for the Q function.
DQN typically makes use of Experience Replay, a memory buffer that contributes better
data efficiency (through data reuse) and better stability (through including uncorrelated
transitions within each batch). DQN was first introduced in 2015 by DeepMind, and it is
highly-performant on many Atari games. Indeed, most of the leaderboard on the Atari
Pong Benchmark is comprised of implementations of (variants of) DQN. As such, since
Atari Pong is the closest existing application to ours, we decided to apply DQN to our
squash environments.

3.2.1 Trainer and Model Architecture

Off-the-Shelf Implementation We used off-the-shelf implementations for PPO and DQN
training from RLLib [1], a popular RL library. Applying these off-the-shelf implementa-
tions required some work figuring out how to make them compatible with our custom
environment. In particular, we had to fiddle around with the default model architecture
a bit so that it would be compatible with our custom squash environment’s observation
space, but after this initial work, using off-the-shelf implementations proved very easy for
running many training experiments with minor differences at once.

Model Architecture The underlying architecture for our adapted RLLib off-the-shelf
trainers for both PPO and DQN consisted of a Vision Network with five convolutional
layers and 4 fully connected layers, connected sequentially. The final fully connected layer
would have dimension equivalent to that of the environment’s action space and would be
treated as a Categorical distribution from which actions are sampled.

Training Details We trained each model for 24 hours on a 10GB GPU (MIG partition) on
the Della Cluster. Since each version of our environment has a slightly different state space,
and the two algorithms have different training protocols, 24 hours amounted to a different
number of steps for training run. Nonetheless, we observe that within 24 hours, most of
our training configurations reach a peak and then either collapse or level off (as can be
seen from the reward curves plotted in Figure 6), so we are optimistic that this was an
appropriate training time for our model architectures. We saved intermediate checkpoints
every ten steps of training, which proved very helpful for referring to time steps before
training collapsed.

3.3 Previous Unsuccessful Efforts

In previous unsuccessful iterations, we tried to implement PPO and DQN ourselves
(adapting homework code) before switching to the RLLib [1] implementations.

We also played around considerably with the reward function, at times experimenting with
higher magnitude rewards (e.g., -50 for losing, +10 for hitting the ball) and also a reward
penalty for being far from the ball (to encourage the paddle to be near the ball and also
make rewards less sparse). However, our exploration of these alternate reward functions
did not yield strong results, so we settled on the reward function described earlier in this
section.

4 Results and Analysis

In this section, we discuss the results from our suite of 2×5 training experiments (2
algorithms over 5 environment variants) described in Section 3 above. We plot the reward

6

https://paperswithcode.com/sota/atari-games-on-atari-2600-pong


Learning a Squash RL Agent: Yasse-RL Halaby

COS435 / ECE433: Introduction to RL

Due: May 7, 2024

curves from each training run. We supplement these results with qualitative observations
about the performance of each trained RL agent, accompanied by links to videos of each of
the trained agents in action.

4.1 Training Reward Curves

We let each agent train for 24 hours. We show the reward curves in Figure 6. Recall
that the agent is programmed to lose eventually and accrue a reward of -1.0 for losing.
Furthermore, the reward for each hit on the ball is +0.5, so we can use these numbers to
get a sense of the average number of times our trained agents successfully hit the ball
(Number of hits ≈ (Mean reward + 1.0)/0.5) (which we later also visually evaluate and
confirm).

Looking at the reward curves in Figure 6, we can observe that all of our implementations
with 1D paddle movement— all of the PPO and DQN single player and multi player v1

plots— result in a trained agent that hits the ball on average 0-2 times. While not super
successful, this indicates some amount of learning, with PPO Multi Player 1 (Diff) in
particular even achieving a high positive reward at certain points in training. Furthermore,
even qualitatively from the training curves, we can see that DQN training is relatively
unstable [4], with its variants often achieving high rewards at some points of training
but not consistently maintaining these rewards. In the next section, we look closer at the
trained agents and evaluate their performance qualitatively.

4.2 Observing the Trained Agents’ Performance

For each of our ten experiments, we evaluated the performance of the trained agent.
Since RL training in general can be unstable and collapse, we thought it best to use the
reward curves (and our intermediate checkpoints) to help us select the best performing
checkpoint for each experiment. In Table 1, for each agent, we report the maximum mean
reward achieved during training (averaged over 10 rollouts), corresponding to the peak
of that agent’s reward curve in Figure 6 and evaluate a rollout of that trained agent in its
corresponding environment (by sampling actions from its trained policy). We report our
qualitative observations on the performance and behavior of the agent, and the reader can
follow along in the linked screen recordings of the rollout.

We encourage the reader to check out the videos of our trained Squash RL agents in action!
All videos are contained in this linked folder (each video is labeled with the algorithm,
version, and checkpoint’s step number). Each rollout starts on the opponent’s turn.

7

https://drive.google.com/drive/folders/1AAjzwHzfwl-s7-YXn-nNiv9pHfluyGqT


Learning a Squash RL Agent: Yasse-RL Halaby

COS435 / ECE433: Introduction to RL

Due: May 7, 2024

0 50 100 150 200 250 300
Step

1.0

0.5

0.0

0.5

1.0

M
ea

n 
Re

wa
rd

PPO Single Player

0 200 400 600 800
Step

1.0

0.5

0.0

0.5

1.0

M
ea

n 
Re

wa
rd

DQN Single Player

0 50 100 150 200 250 300
Step

1.0

0.5

0.0

0.5

1.0

M
ea

n 
Re

wa
rd

PPO Multi Player v1

0 200 400 600 800
Step

1.0

0.5

0.0

0.5

1.0

M
ea

n 
Re

wa
rd

DQN Multi Player v1

0 50 100 150 200
Step

1.0

0.5

0.0

0.5

1.0

M
ea

n 
Re

wa
rd

PPO Multi Player v1 (Diff)

0 100 200 300 400 500 600
Step

1.0

0.5

0.0

0.5

1.0
M

ea
n 

Re
wa

rd
DQN Multi Player v1 (Diff)

0 100 200 300 400
Step

1.0

0.5

0.0

0.5

1.0

M
ea

n 
Re

wa
rd

PPO Multi Player v2

0 200 400 600 800
Step

1.0

0.5

0.0

0.5

1.0

M
ea

n 
Re

wa
rd

DQN Multi Player v2

0 100 200 300 400
Step

1.0

0.5

0.0

0.5

1.0

M
ea

n 
Re

wa
rd

PPO Multi Player v2 (Diff)

0 200 400 600 800
Step

1.0

0.5

0.0

0.5

1.0

M
ea

n 
Re

wa
rd

DQN Multi Player v2 (Diff)

Figure 6: Training Reward Curves. The different models and algorithms varied consider-
ably in their rewards encountered during training, with PPO failing to accrue any positive
reward in the 2D movement Multi Player v2 setting, but excelling in the 1D movement
Multi Player v1 setting. DQN generally achieves decent rewards, but does not always
maintain them.

8



Learning a Squash RL Agent: Yasse-RL Halaby

COS435 / ECE433: Introduction to RL

Due: May 7, 2024

Table 1: Agent Performance in Various Experiments

Experiment Max Reward Achieved Observations of Agent’s Performance

PPO Single -0.68 Successfully hits the ball once; the ball
bounces off and leftward. Correctly juts a
little bit left (0:04) but then stops moving
(gets stuck on the right wall) and fails to hit
the ball the next time.

DQN Single +0.185 Usually doesn’t hit the ball, but learns to
mostly stay central, and so it occasionally
will hit the ball.

PPO Multi v1 -0.5 Gets one hit on its turn, but then misses on
the next turn.

DQN Multi v1 -0.155 Hits the ball once on its turn, generally stays
in center.

PPO Multi v1

(Diff)
+0.96 Hits the ball 3 times (0:14, 0:36, 0:59)!

Genuinely looks like a successful, strategic
rally. When we miss, we are very close.
Furthermore, we strategically don’t move
across the court when it is the opponent’s
turn (0:44).

DQN Multi v1

(Diff)
-0.165 Is able to hit the ball anywhere from 1-4

times, but does particularly well when it gets
lucky and the ball always lands relatively in
the middle of the screen. If it ever has to
leave the middle to chase the ball, it doesn’t
do so well.

PPO Multi v2 -1.0 Moves randomly, never finds the ball.

DQN Multi v2 -0.52 Correctly juts up when it is its turn to hit the
ball and the ball is up, but doesn’t move left
and right enough to reach the ball. We didn’t
observe any hits, but it is possible (and
evident in the reward output) that some hits
were encountered at some point during
training.

PPO Multi v2

(Diff)
-1.0 Moves randomly, never finds the ball.

DQN Multi v2

(Diff)
-0.70 Moves up and down erratically, we do not

observe it finding the ball.

9



Learning a Squash RL Agent: Yasse-RL Halaby

COS435 / ECE433: Introduction to RL

Due: May 7, 2024

From Table 1, we can see that while most trained agents are not very good at the game (in
particular the agents in the Multi v2 environments with 3D ball movement and 2D paddle
movement, as was expected due to the complexity and difficulty in stumbling toward
hitting the ball in exploration), even the agents that are pretty bad learn some interesting
behaviors. Most of the agents trained in the Single Player or Multi v1 environment are
able to occasionally hit the ball, and some (PPO Single, DQN Multi v2) make movements
toward the ball even in instances where they miss. Interestingly, a few agents learn an
emergent strategy to mostly stay in the middle (DQN Multi v1, DQN Multi v1 Diff), which
outperforms learned strategies that get stuck to one wall (PPO Single).

Most impressively, though, is the performance of the agent trained with PPO in the Multi
v1 environment, with the difference of frames fed as input (PPO Multi v1 Diff). As we can
also see from its reward curve in Figure 6, this agent learned much better than the other
agents. Indeed, qualitatively, watching the agent “play" in its environment, we see some
impressive behaviors (we highly encourage the reader to check out the video!):

• The agent returns the ball 3 times! (These occur at timesteps 0:14, 0:36, and 0:59

in the video). Being able to return the ball 3 times on its turn is a non-trivial
accomplishment for our agent!

• Even when the agent misses (as observed in other rollouts too), it is not far off from
the ball. In general, on its turn, the agent always motions in the correct direction
toward the ball. This signals a good degree of learning.

• Finally, the agent acts very strategically when it is not its turn to hit the ball,
signaling its ability to learn from the “turn" information contained in its state as
well as a relevant strategy. In particular, when the ball is going to the opposite end
of the screen and it is not the agent’s turn (0:44), the agent does not chase after it
(in contrast to the agent chasing after balls on its own turn as discussed above).
This is a good strategic move, as generally when the opponent returns the ball,
it may return back to the agent’s side of the screen, so it is generally (in the real
world) strategically beneficial not to run across the court to chase a ball not on
your own turn.

In general, we are quite impressed with the performance of the PPO Multi v1 (Diff) agent,
and bestow upon it the title of "Yasse-RL Halaby"!

5 Limitations

One large limitation is that we were unable to train an agent that would perform well
in our Multi v2 environment, where paddles can move in two-dimensions. This was
initially our stretch goal, and we are excited to leave it to future work, but this setting
was particularly difficult due to the improbability of stumbling upon contact with the
ball in initial exploration (and thus increased sparsity of reward). The problem is also
harder— it is practically harder (even for a human) to plan actions to hit the ball before its
second bounce. Given more time, we look forward to exploring new ways to train on this
environment.

Another general limitation is that models take a lot of time to train, and because of the
time-bound nature of this assignment and the several iterations we took to finalize our
MDP and training, we did not engage in as much exploration of model architectures or
different RL libraries for exploring training. We are confident and excited for future work
to build upon the progress we have already made, as well as our released environments, to
train even more capable RL squash-playing agents!

Finally, there are of course limitations to our formulation as an MDP, as we highlighted
throughout— this is somewhat inherent to formulating a very complicated problem as an
MDP. There is room to further explore action spaces that allow for more aim of

10



Learning a Squash RL Agent: Yasse-RL Halaby

COS435 / ECE433: Introduction to RL

Due: May 7, 2024

6 Conclusion

The contributions of our project are two-fold: (1) the design and implementation of a
suite of three novel custom RL environments for squash (including the first known gym
environment that captures the 3D nature of a paddle-based game!) and (2) the application
of PPO and DQN to our custom environments, culminating in our decently-capable RL
squash player, Yasse-RL Halaby. Yasse-RL Halaby is able to return the ball multiple times
and demonstrates strategic actions like following the ball when it is its turn to play but not
dashing across the court on the opponent’s turn.

This project represents a promising first step in applying RL to Squash, and we hope that
releasing our custom environments will inspire further research into increasingly capable
Squash RL agents! Our code, including all environments and training implementations,
can be found in our Github repository.

References
[1] Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., Gonzalez, J., Jordan,

M., and Stoica, I. (2018). RLlib: Abstractions for distributed reinforcement learning. In
Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 3053–3062. PMLR.

[2] Towers, M., Terry, J. K., Kwiatkowski, A., Balis, J. U., Cola, G. d., Deleu, T., Goulão, M.,
Kallinteris, A., KG, A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schulhoff, S., Tai, J. J.,
Shen, A. T. J., and Younis, O. G. (2023). Gymnasium.

[3] Won, J., Gopinath, D., and Hodgins, J. (2021). Control strategies for physically simulated
characters performing two-player competitive sports. ACM Trans. Graph., 40(4).

[4] Xu, Y. (2023). Deep reinforcement learning and imitation learning based on vizdoom.
In Proceedings of the 2022 6th International Conference on Electronic Information Technology
and Computer Engineering, EITCE ’22, page 1700–1706, New York, NY, USA. Association
for Computing Machinery.

11

https://github.com/amukherjee18/squash-rl/blob/main/pong_custom.py

	Introduction and Motivation
	Related Work
	Method
	Custom Environment
	Version 1: Single Player (2D ball movement, 1D Paddle Movement)
	Version 2: Multi Player v1 (2D ball movement, 1D Paddle Movement)
	Version 3: Multi Player v2 (3D ball movement, 2D Paddle Movement)

	Applying RL Methods
	Trainer and Model Architecture

	Previous Unsuccessful Efforts

	Results and Analysis
	Training Reward Curves
	Observing the Trained Agents' Performance

	Limitations
	Conclusion

